Applying Adaptive Neuro-Fuzzy Inference System to Improve Typhoon Intensity Forecast in the Northwest Pacific
نویسندگان
چکیده
Typhoon intensity forecast is an important issue. The objective of this study to construct a 5-day 12-hourly typhoon model based on the adaptive neuro-fuzzy inference systems (ANFIS) improve in Northwest Pacific. It analyzed improvement ANFIS by comparing it with MLR when only atmospheric factor or both and oceanic factors are considered. This collected SHIPS (Statistical Hurricane Intensity Prediction Scheme) developmental data typhoons Pacific before landing from 2000 2012. input were simplified stepwise regression procedure (SRP). Subtractive clustering (SC) was used determine number rules reduce complexity. Model Index (MI) taken as standard SC network architecture model. simulated results show that MI could effectively radius influence SC. significantly improved after environmental added. RMSE highest at 84 h; underestimated ratio primarily positive. Songda case shows maximum bias greatly improved, 60 h lead time, percentage (39%). Overall, forecast.
منابع مشابه
The Use of Fuzzy, Neural Network, and Adaptive Neuro-Fuzzy Inference System (ANFIS) to Rank Financial Information Transparency
Ranking of a company's financial information is one of the most important tools for identifying strengths and weaknesses and identifying opportunities and threats outside the company. In this study, it is attempted to examine the financial statements of companies to rank and explain the transparency of financial information of 198 companies during 2009-2017 using artificial intelligence and neu...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملRANFIS: Rough Adaptive Neuro-Fuzzy Inference System
The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has b...
متن کاملPrediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system
Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the qualit...
متن کاملDeveloping new Adaptive Neuro-Fuzzy Inference System models to predict granular soil groutability
Three Neuro-Fuzzy Inference Systems (ANFIS) including Grid Partitioning (GP), Subtractive Clustering (SCM) and Fuzzy C-means clustering Methods (FCM) have been used to predict the groutability of granular soil samples with cement-based grouts. Laboratory data from related available in litterature was used for the tests. Several parameters were taken into account in the proposed models: water:ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water
سال: 2023
ISSN: ['2073-4441']
DOI: https://doi.org/10.3390/w15152855